Enterprise Architect version 15.2

download
purchase

enzh-CNcsnlfrdehiiditkoplptruskessv

My Profile

Social Media Channels

facebook  twitter  youtube   linkedin

Displaying items by tag: code generation

Adventures in User Interface Design and Code Generation – Part 1

Doug Rosenberg

Parallel Agile

This email address is being protected from spambots. You need JavaScript enabled to view it.

This email address is being protected from spambots. You need JavaScript enabled to view it.

We’re busy these days teaching CodeBot how to generate fully functional web applications from UML models, with as little coding as possible (and ideally with no coding at all).  The basic steps involved are

  1. Develop a domain model and code generate database and API
  2. Wireframe the screens and link them to the API
  3. Develop a UX Navigation State Machine that defines the sequence in which screens appear
  4. Code Generate and automatically host the generated database, API, and web app code
  5. Test, iterate, and refine

 

We’re using a Location Based Advertising (LBA) System to test CodeBot’s performance on a real project.  LBA is a geofenced coupon delivery system and its web application allows advertisers to Register for an Account, Login, and Publish Coupons.  These coupons are then received by a mobile app that’s connected to the hosted API when a geofence is entered.

CodeBot Generates UI Code

CodeBot generates React/Bootstrap code from wireframes as shown in Figure 1.

Fig 1 Register wireframe and screenshot

Figure 1 - No coding is needed to create the Registration Page – because it’s generated from a wireframe

The screens are linked to the API using UML Tagged Values, and both Registration and Login are done securely on the server-side using JWT authentication, as CodeBot generates Login and Register methods in the API automatically. The sequencing of the generated screens is defined using a UX Navigation State Machine as shown in Figure 2.

Fig 2 LBA1 navigation

Figure 2 - First draft UX Navigation state machine is simplistic

At first glance, the initial state machine makes sense; first you Register and then you Login, right?  But when you code generate the project and start using the hosted web app, you quickly realize that whoops, once I’m signed up, I don’t want to see the Registration page anymore.  I want the web app to take me to the Login page first, and if I’m a new user, allow me to Register, then take me back to Login.

Which comes first, the chicken or the egg?

From a use case standpoint, it’s a pretty simple modeling decision…does Register <precede> Login or does Login <invoke> Register?  If you reflect on it for a few seconds, it’s pretty clear that Login needs to invoke Register (Figure 3). This is where the rapid iteration between design, generated code, and hosted application that CodeBot enables really shows its power. 

Fig 3 precedes or invokes

Figure 3 - In a real system, Login <invokes> Register, because you only Register once

Developing at the speed of thought

An ideal scenario would be to make these changes to the application at the speed of thought…just re-wire my state machine (Figure 4), make a couple of changes to the Register and Login wireframes, press the button and have CodeBot automatically re-generate the entire web application and host it in the cloud.

Fig 4 LBA2 navigation

Figure 4 – Ah, that’s better: re-wiring the state machine to start with Login

As “developing at the speed of thought” is the goal of CodeBot, that’s exactly how it works. The re-wired state machine now starts with Login and handles transitions between Login and Register Pages.

Fig 5 login 1 and login 2

Figure 5 – Modified Login wireframe allows us to Register new users

While we’re re-wiring the navigation state machine, we also update the Login wireframe to take new users to the Register page (Figure 5) and similarly update the registration page.  After a quick visit to the CodeBot web console we’ve got a re-deployed web application as shown in Figure 6.

Fig 6 CodeBot makes quick work of rebuilding the React pages

Figure 6 - Ah, that's even more better.  CodeBot makes quick work of generating and hosting the new web app.  It’s up and running in minutes!

The real power of CodeBot driven UX development is the ability to rapidly generate and deploy new versions of an application in minutes to get the feedback-driven benefits of agile development.  Short iterations are the key to developing a refined and customer-tested user interface (and associated access-controlled database).

How do we manage one developer per use case?

If you’ve been reading anything about Parallel Agile you already know that we like to enable projects to get done quickly by having developers work in parallel.  So we might have one developer working on the Login and Register wireframes and another working on the UX Navigation state machine.

Fig 7 one developer per use case

Figure 7 - Working in parallel requires good version control

What if each of our developers were working on a separate UML model?  We’d need some way to manage and merge versions of the model.

Like branches on a tree

We’ve recently discovered a companion product to CodeBot that manages branching of UML models in a way we’ve always wanted to see – with visual differencing on diagrams. That product is called LemonTree, from LieberLieber software. We’re pretty excited about the potential of using CodeBot and LemonTree together (more on that coming soon).

Fig 8 LemonTree diff navigation 2 Register

Figure 8 - LemonTree does visual differencing on state machine diagrams

Fig 9 LemonTree diff wireframe login copy

Figure 9 - Visual differencing on wireframes enables parallel development

With visual differencing and model versioning, the “one developer per use case” paradigm of Parallel Agile becomes quick and easy to manage.

The Need for Speed

Our mission at Parallel Agile is to help you to develop software radically faster while simultaneously improving its quality.   Our approach is to systematically remove obstacles from from an idealized process of “developing at the speed of thought”.

At a macro level, speed improvements are made possible by encouraging a scalable one-developer-per-use-case paradigm.  This is enabled by CodeBot’s automatic generation of database, API, and API documentation from an easy-to-understand domain model. Incorporation of things like JWT tokenized Registration and Login and Role Based Access Control into CodeBot’s API generation simplifies handling of data privacy issues.

At a more-fine grained level (within each use case) CodeBot’s generation of web applications from wireframes and state machines gets your system up and running in a big hurry, then short iterations of an automatically hosted and deployed application allow for rapid refinement of the system to make sure it meets customer needs.  Management of a highly parallel development process where “the model is the code” is facilitated by LemonTree’s visual differencing and merge capabilities.

If you need to develop software faster and all of this catches your interest, we’d love to hear from you.  User Interface code generation is currently available in pre-release for our Early Access customers (Early Access is available on request for all paid CodeBot licensees).  Watch for announcements coming soon.


Dive in deeper

 

CodeBot 201 Generating complete web apps including UI and database

Video: CodeBot - Generating complete web apps including UI and database

Here are a few links for further exploration:

Parallel Agile Blog: https://medium.com/parallel-agile-blog

Parallel Agile Book on Amazon: https://www.amazon.com/Parallel-Agile-faster-delivery-defects/dp/303030700X

Training on the Parallel Agile Process: http://parallelagile.com/training.html

Parallel Agile CodeBot Home Page: https://parallelagile.net/

LemonTree from LieberLieber: https://www.lieberlieber.com/lemontree/en/

Webinar: Model Management for Low Code Projects: https://www.lieberlieber.com/en/webinar-model-management-for-low-code-projects/

Published in Tutorials

The need for speed

With the recent passing of General Chuck Yeager as well as the beginning of 2021, I thought it might be a good time to reflect on the never ending quest for speed. General Yeager, of course, was the man who broke the sound barrier in his Bell X-1 aircraft on October 14, 1947.

It’s always worthwhile trying to do things faster and better — that’s what drives progress and innovation. In the software industry we’re talking about a less death-defying problem than the airspeed pioneers faced, but an important one nonetheless: how fast we can develop software?

 

1 Chuck Yeager X 1 color

Chuck Yeager and the Bell X-1 that broke the sound barrier, Glamorous Glennis

Our primary mission at Parallel Agile is to help companies accelerate the development of high-quality systems — so projects are both faster and cheaper, without sacrificing quality. (Yes, it really can be done!). Maybe in a few years we’ll look back at today’s software engineering techniques with similar nostalgia as we’d look at 1940s subsonic aircraft design.

What makes software slow?

Let’s start by looking at what’s holding a typical software project back from getting itself done quickly:

 

2 speed limiters

Many factors can slow down your project — here are a few chronic causes of software getting done slowly

So, what makes software slow? First of all, the common perception that it’s not possible to develop with bigger teams because of communication overhead. Second, typical agile development processes tend to favor feedback over planning, resulting in under-planned systems that spend lots of time on retrospectives and refactoring. Additional factors relate to a general state-of-the-practice of most code being written by hand — often driven by a general mistrust of generated code. Everything from fundamental database access functions to basic UI functionality is most often still coded by hand. Add in modern requirements for data privacy and database security (things that often don’t fit well into 2 week sprints) and you’ve got lots of time spent writing code the hard way — labor-intensive development. Finally, with CI/CD we’ve got deployment pipelines that get executed on a continuous basis.

How do you go supersonic with your dev process?

So, what’s the right stuff that can help you accelerate your software project? Parallel Agile as a development process, and CodeBot as its primary enabler, offer a different vision for software engineering where the speed limiters shown above are systematically removed. You can remove some of the speed limiters and go faster than before, but it’s really removing the whole set of forced-slowdown practices that yields the most dramatic results.

3 removing speed limits

If your project is being slowed down by anything on the list above, we can help.

Project development is organized by scenario In the first place, from a process perspective, with Parallel Agile you organize your project with a developer responsible for each scenario (hence the “Parallel” part of PA).

 

4 one developer per scenario

It’s simple: assign a developer to each scenario (scale as needed)

You don’t have to work in small teams (although you still can if you prefer to). Communication overhead is reduced by virtue of a shared (executable) domain model among developers. Rather than time slicing development into 2 week sprints (with time on each end for planning and retrospectives), you can allow each use case to evolve along a simplified spiral model starting with proof of concept, moving on to minimum viable product (MVP) and then through as many optimization cycles as needed.

5 spiral

Each scenario (aka use case) evolves asynchronously along it’s own spiral model

How CodeBot shatters the team-size barrier

Back when General Yeager was pioneering flight faster than the speed of sound, it was a dangerous activity because aircraft tended to shake apart due to excessive vibration at Mach 1. But advances in aerodynamics eventually overcame the sound barrier.

What’s the analogy to large team software development? Consider the case where several use case scenarios make use of the same domain object. If you assign a different developer to each scenario, each of those developers needs a common understanding of the data structure (JSON) that comprises that domain object. If you allow each scenario to evolve independently you’ve got a communication and coordination problem to deal with. Having the domain model documented on a UML diagram helps, but it isn’t enough.

We discovered the solution to this problem during the early years of our research into parallel development — to be specific, between 2014 and 2016. During that time we were experimenting with an early version of CodeBot that generated a database access API (and API documentation) from a domain model. We discovered that our developers were able to collaborate easily, even when some were working on mobile apps and others working on web apps. Our first test project involved 47 graduate students working in parallel, on a location-based advertising system (LBA).

We also found that most of the evolution of domain class schema happened during Proof of Concept, and that using a NoSQL database allowed multiple developers to evolve the schema independently. Later, we added switchable schema validation to CodeBot, allowing more free-wheeling changes during prototyping but then providing the ability to lock things down as we moved forward into MVP. We also made updated API docs immediately available online. This ability to rapidly generate a new API along with updated API documentation as changes happen in the shared domain model allows projects to be staffed elastically — your team can be “right-sized” to the problem at hand rather than constrained by pre-imposed limits. This lets you go a lot faster.

6 executable domain model 1

CodeBot turns your domain model into a working database, accessible by a REST API, in moments

Inside the use cases: Getting WIRED

We’ve found that it makes sense to organize the project along use case boundaries, with larger teams of developers each working their own use case, interfacing to a shared domain-driven database API (or event-based model, etc). But what happens inside the use cases? Do we need to do a lot of formal use case modeling? Not necessarily…

We think the fastest way to proceed within each use case is to wireframe up the screens that participate in the use case, connect the wireframes to the executable domain model, and then code generate the screens. Think of this as Wireframe-driven, Iterative, Rapid, Enterprise-ready Development (WIRED).

7 wireframe MVC

You might recognize a Model-View-Controller pattern in CodeBot’s generated UI code

We use the CodeBot full-stack application generator to do this code generation for us. In fact, CodeBot is optimized towards PA’s highly iterative process. In short, you can use CodeBot to generate working user interface code (e.g. React JS) from wireframes, where the UI navigation or user flow is driven from a UML state machine, and the screens connect to the database using the API. It all happens automatically, and it happens very quickly with CodeBot UX.

 

8 wireframe to map

CodeBot UX is the fastest way to get from an EA wireframe to a running web application

 

Being Enterprise-ready means Security is baked in

To be Enterprise-ready in 2021, you need to deal with requirements for data privacy.  This means avoiding threats from hackers, making your applications fully security-aware, and implementing best practices for secure development. From an app development standpoint, dealing with security concerns slows you down, and complicates hiring and staffing your project as not all developers are expert at security-related issues.

9 access control

CodeBot-generated APIs come with an Access Control Layer that helps prevent unauthorized access

Over the last year we’ve spent massive amounts of effort building security infrastructure into CodeBot. Capabilities like server-side registration and login automatically generated as part of the API, fully-tokenized (JWT) access, and Role Based Access Control (RBAC) are built-in to the database access API as an access control layer when the model is code generated. The resulting time and cost savings all accrue to your benefit. And if you consider the cost of getting your database hacked…it’s a pretty easy decision to make.

Rapid Iterations come with auto-deployment

To fully realize the promise of agile, feedback-driven development, you need to iterate the project’s use cases quickly to gain immediate feedback from clients. CodeBot enables this capability through automatic deployment of both the UI and the back-end database/API.

10 deployment

With CodeBot UX you go from a UML model to a running (and hosted) web app in under 5 minutes

At present, CodeBot can generate and deploy a securely hosted full-stack web application from a UML model in approximately 4 minutes. This capability makes it quick and easy for each use case to evolve through its spiral model and to quickly test in the context of a deployed system.

So, how fast do you want to go?

Are you content with the pace of small-team, short-sprint agile development, or would you like to deploy a larger team on a more complex problem and get the project done more quickly? Are you happy with the pace of writing database access code by hand, and wrapping the common database functions in a REST API, by hand? Is it quick and easy to turn a set of wireframes into fully-functional user interface code, where the screens are automatically linked to the database? Are you happy with the pace of adding Security to your applications? And finally, does it take you longer than 4-minutes to build and deploy a fully-working application? If you’d like to get your projects done faster and less expensively, but without sacrificing quality… contact us at This email address is being protected from spambots. You need JavaScript enabled to view it..

Published in White Papers
Thursday, 10 December 2020 20:34

Tutorial: Domain Driven Database Design

The first video of our CodeBot 201 tutorial series walks you through defining a domain model for a Fantasy Football app, and using CodeBot to instantly transform the domain model into a complete MongoDB database and REST API:

 video title

How easy is it to generate a working database and API from an EA domain model?  Really, really easy...

This video will show you how in less than 3 minutes…which is about how long it takes for you to try it yourself.  In our example, your app can show video of the players scoring touchdowns in near real-time 

 

In this video we’ll follow the evolution of the TEAM object from a noun on a short problem domain description,

list of nouns

Team is an object in the problem domain

 to a class on a domain model diagram,

domain model

A Team has an Owner and a Roster and a Schedule

 

to a Mongo DB collection with a NodeJS REST API (documented in Swagger),

API docs

Use the API to Create Teams, Read Teams, Update Teams…

and a client-side layer that makes accessing the API nice and straightforward.

client code

 You don’t need to call the API directly because CodeBot generates client-side code including usage samples

CodeBot is a complex product that does an incredible amount of work to simplify your life as a developer. Give it a try today!

Published in Tutorials

How to create a full-stack React Bootstrap UI in under 10 minutes

A tutorial and reference on designing a complete web application and generating it with CodeBot UX

by Matt Stephens, Parallel Agile

This article was originally published here: https://medium.com/parallel-agile-blog/create-a-full-stack-react-bootstrap-ui-in-under-10-minutes-d0eec3077618

CodeBot from Parallel Agile is a full-stack application generator, which can also host your generated application in the cloud. Give CodeBot a domain model and UI wireframes, and it’ll create:

  • a React web UI
  • a MongoDB database
  • a Node/Express.js REST API, optionally secured using JWT
  • API client libraries — currently Java and JavaScript, with other languages set to be released soon, including C#, Swift, TypeScript
  • JSON Schema
  • Swagger/OpenAPI docs

We have more targets, platforms, architectures and languages on the way, but that’s plenty to get started with!

To whet your appetite, here’s a quick CodeBot video that shows a project being turned into a generated UI:

tutorial1

 

Getting Started

To get started designing your new application, you’ll need:

  • a copy of Enterprise Architect (EA)  to create the domain model and wireframes
  • a CodeBot account from Parallel Agile

At the time of writing, the generated React UI isn’t in full release, but it’s available under Early Access for customers with a CodeBot license (to gain access, please email us)

There’s also a handy series of step-by-step CodeBot 101 videos that show how to get everything installed and set up — so I won’t repeat those details here:

VSRADS Example

In this article I’ll walk through the a much-simplified version of the “VSRADS” model shown in the above example video.

VSRADS stands for “Very Short Range Air Defence System” — it’s basically a mosquito zapper. It listens for the high-pitched whine of a mosquito flying by, calculates its position and trajectory, and zaps it with a low-frequency laser.

Our example project is a state machine simulator… given a series of states, a web page is generated to represent each one; and the state machine itself is turned into the navigation “user flow” between pages — i.e. the routes.

So let’s get started!

Step 1: Create a project with 3 top-level packages

Create a new, blank project in EA, and give it the following 3 packages (via “Add View” in the right-click menu):

tutorial2

 

This will become a familiar pattern… the “three amigos” for defining a new full-stack project

When the model is generated later, the elements in each of these packages will contribute to the generated application, as follows:

tutorial3

  • Each wireframe is turned into a React web page
  • The navigation state machine is turned into a set of routes
  • Each domain class (created in the Domain Model package) is turned into a MongoDB collection and REST API create/read/update/delete endpoint

Step 2: Draw the domain model

Under “Domain Model”, create a class diagram and populate it with some domain classes.

The complete VSRADS domain model looks like this:

 tutorial4

For this example you could just create a subset — just be sure to include Simulation Run, as we’ll be linking it to the UI and database.

Step 3: Design the UI Navigation

The idea is that you design individual screens as wireframes, and link them together via a “user flow” or navigation diagram; in this case we’ll draw the user flow as a state machine:

  • Each state represents a screen or page
  • Each transition (the arrows linking the states together) represents a navigation route

Navigation routes are triggered by things like clicking a link, or submitting a form — “create” or “update” actions.

To introduce the idea, here’s a “hello world” kind of example:

 tutorial5

 

Each generated page will be given its own URI (/login, /view_products etc) so can be individually bookmarked. However, the “Initial” pseudo-state is used to determine which page is displayed by default— the “navigation root” or home page.

Back to VSRADS though… this is a more complex state machine:

 tutorial6

 

Each transition arrow has been given a trigger, which is shown as a label in the diagram. To add a trigger, double-click on the transition:

 tutorial7

 

In EA, you don’t need to select the trigger type etc, you can just enter a name, to keep it simple.

The name needs to match up with the component name in the wireframe, e.g. a button called “Target Identified” — you’ll see some examples of this in the next section.

Usually, the trigger name is also prefixed with an event type, such as on click: or on create: . However, “on click” is the default, so can be omitted.

It’s also worth noting, if the button name is the same as the target page, then CodeBot will figure it out, so you then don’t even need to give the transition a name.

The following event prefixes are supported:

  • on click— e.g. “on click: Login”
  • on create — e.g. “on create: Target”
  • on update — e.g. “on update: Target”

The events all take place in the “source page”, i.e. the page that the transition arrow points from. The trigger will, as you’d expect, result in the app navigating to the “target page”.

The create and update events are triggered when a form is submitted in the “source page”.

Now that you have the overall website or application designed, it’s a good time to create a wireframe for each one.

Step 4: Design the wireframes

EA has a UI wireframe designer built-in. Because the wireframes are fully integrated into the UML model, you can link together wireframe elements, classes, states and other elements… so everything fits together in the generated project.

The VSRADS model has 8 wireframes in total. For this article we’ll focus on two of them, Set Up Simulation (the start page), and Listening for Mosquitoes.

Creating a Wireframe

Right-click on the Wireframes package and choose New Diagram:

tutorial8

In the new wireframe, you need to create a top-level frame which serves as the page-size boundary. This may seem less relevant for websites, but will become important when CodeBot also generates other platforms such as mobile apps. (New feature coming soon!!)

 tutorial9

Always add a “Client Area” to represent the page boundary, and fit all the wireframe components inside it

Next, add some components to the page!

  tutorial10a

Currently with the Early Access release, CodeBot recognises a subset of all the available components. So for now, be sure to only add from the Controls and Website Controls tool palettes.

Position and size the components to match your page design. CodeBot will translate this into a responsive website layout; e.g. it’ll detect grids of label/textfield pairs, alignment of individual labels or buttons, etc.

You can also supply hints to influence how the page is generated. In EA, this is done via tagged values — you can find these on the Tags tab in the Properties panel:

 tutorial11

In the above screenshot, the Set up Simulation title has been given a tag called css class, with the value h1 (“Heading 1”). To add more than one CSS class, separate them with spaces.

The generated website uses the popular React-Bootstrap project, meaning you can specify any “Bootstrap-standard” CSS classes here.

Another useful tag is variant. This conforms to the Bootstrap 4 colour variants:

 tutorial12

For example, the Run Simulation button is given the “primary” variant (the exact case doesn’t matter) via a tagged value, so will be rendered in the page with a solid-blue background:

 tutorial13

In this way, it’s possible to adhere to Bootstrap’s design language—the “primary” variant represents the main or default action, etc.

For future platforms even if they don’t use Bootstrap, CodeBot will adapt the same “Bootstrappy” tagged values to the target platform, so you’ll only have to draw the wireframes once in order to get a generated website, mobile app, desktop app etc.

Just to illustrate another page in the same UX design, here’s the Listening for Mosquitoes wireframe:

 tutorial14

The Image component can display any image type normally supported in web browsers (jpeg, gif, png). Just include a url tag with the complete URL where the image can be loaded from.

Step 5: Define actions on UI elements

In the previous screenshot, the Run Simulation button also has a tag called action, with the value create.

As long as the button resides in a container panel with form components (text fields etc), when the button is clicked, the form will be submitted to the generated REST API. What happens next depends on the value of the action tag:

  • create (create a new record in the database)
  • update (update the current record)

The form elements do need to be linked to a particular domain class, though; so let’s do that next.

Step 6: Link UI elements to the domain model

There are two ways to associate UI elements with a particular domain class:

  1. Use the domain tag
  2. Draw a dependency relationship from the UI element to the domain class

Which one you use is entirely up to you; the effect on the generated code is exactly the same. It’s more of a stylistic choice, as some people appreciate the visual aspect of seeing a link on the diagram, while others prefer the detail to be tucked away.

Domain tag

Click on the form component you’d like to link, and add a tag as follows:

tutorial 16a

The domain tagged value uses the form:

Class Name.attribute name

e.g. Simulation Run (the domain class), a dot, then name (the attribute name).

As a time saver, you can also just add the domain class name to the parent container panel:

 tutorial17a

The “child” form components are then auto-linked to the domain attributes, by matching each component name with an attribute name.

Once this linking-up is done, then when the generated form is submitted, it’ll automatically call the correct REST API endpoint for that domain class.

Dependency arrow

As an alternative to the domain tag, simply drag the relevant domain class from the package explorer onto the wireframe. Then draw a dependency arrow from the container panel to the class:

 tutorial17

You can also link the individual text fields to the class, if preferred.

To emphasize again, this has exactly the same effect as using the domain class; which you use is just a personal preference.

 

Step 7: Generate the application

If you have the CodeBot add-in installed in EA, right-click on the root (“Model”) package in the package browser. Then choose:

Specialize > Parallel Agile > Generate Project

If you can’t run the add-in for any reason (e.g. you’re on a Mac using a Windows VM), another way to run CodeBot is as follows:

  1. Make sure you’ve selected the root (“Model”) package, then from EA’s ribbon menu, choose:
    Publish > Export-XML -> Export XML for Current Package
  2. Login into the CodeBot Web Console at parallelagile.net, and choose Upload XMI:

 tutorial18

tutorial19

CodeBot will detect that the model contains wireframes, and automatically generate a Bootstrap-React project. You can find it in the downloaded zipfile, in the UX/React folder.

 

Step 8: Run the React app!

You can optionally elect the generated application to be hosted — just make sure the “Publish to our cloud service” checkbox in the above screenshot is ticked.

In this case, CodeBot will automatically build the React app, and then publish the full website, REST API and database to our secure cloud service.

To access the hosted website, click the blue Visit Website button (visible in the above screenshot).

The Set up Simulation page will load in a separate tab:

 tutorial20

 

When you enter some form details and click Run Simulation, the following series of events take place:

  1. Due to the action tag and the linked domain class, the React app submits the form to the REST API
  2. The REST API validates the form data against the generated JSON Schema (based on the domain class and attributes), then creates the new record in the MongoDB database
  3. Due to the on create: Run Simulation trigger on the navigation state machine, the React app will detect that a “create” just happened linked to the Run Simulation button. So (as the trigger is on a transition), the browser navigates to the next page, Listening for Mosquitoes:

 tutorial21

In closing…

CodeBot UX radically shortens the iterative feedback loop when developing new software. When domain modeling, you can now quickly create a working prototype, use the prototype to elicit new or changed requirements, feed the updates back into the model, rinse and repeat…

… often several times in the same workshop session, with the customer or domain expert right there in the room (or on the same Zoom call).

CodeBot UX is available now for Early Access customers. To request access, please email us at: This email address is being protected from spambots. You need JavaScript enabled to view it. — we’ll welcome your feedback!

Published in Tutorials
Wednesday, 25 November 2020 08:43

CodeBot UX is available to early access users

FOR IMMEDIATE RELEASE:  November 23, 2020

Urvashi Prakash Parallel Agile

This email address is being protected from spambots. You need JavaScript enabled to view it.

No Code App Generator, CodeBot UX is available to early access users 

 

November, 2020, Los Angeles, CA: Parallel Agile’s full-stack application generator, CodeBot UX, is now available to early access users. With CodeBot you can already generate full-stack applications from a domain model, while its newly engineered UX components allow users a smoother and far more nuanced and centralized approach towards app generation.

Codebot UX supports Enterprise Architect UML models including class diagrams, state machines and wireframes. From these, CodeBot generates a database schema, API documentation, server-side code, client-side code including domain classes, CRUD functions and usage examples. While supporting both SQL and non-SQL databases, CodeBot also generates all three layers of the MVC framework.

CodeBot can also automatically host your generated web application in the cloud, at the click of a button.

According to Matt Stephens, Director of Development for Parallel Agile: "Our ability to link screens to an auto-generated database access API and to drive UI navigation from state machines effectively makes MBSE models executable, fulfilling a vision originally set out in 2002 when Steve Mellor wrote Executable UML".

With this early access release, the following React UI components are ready for users to try out: Panel, Button, Label, Text field, Table and Video Player.

CodeBot UX initially targets React, but will soon build equivalent user interfaces for React Native, Vue.js and Angular.  Video illustrating CodeBot UX (MBSE: CodeBot for Software Intensive Systems) is available on YouTube.

Doug Rosenberg, Parallel Agile CTO, states: "CodeBot UX’s ability to generate working screens from wireframes to full stack code generation and automatically host the working application, introduces a new model-driven development paradigm where CodeBot effectively serves as a UML compiler, producing running applications directly from UML or SysML models."

 More about the company:

Parallel Agile addresses the underlying technical issues with integrating work done by large teams in addition to the management issues – specifically enabling large teams of developers to collaborate efficiently and reduce schedule time on projects.   The company offers training in UML, SysML, MBSE, and Agile development in addition to its full-stack application generator, CodeBot.

Early Access Program

Parallel Agile’s early access program allows CodeBot licensees to gain access to a growing range of new features and capabilities.  New CodeBot customers can request early access when they purchase their license.

CodeBot UX is available immediately for early access users.

For more information on CodeBot, please visit www.parallelagile.com or email us at: This email address is being protected from spambots. You need JavaScript enabled to view it.

###

Published in News

 

We've just released a major upgrade to the Parallel Agile CodeBot.  As you might already know, CodeBot generates database schema, database access functions, and a REST API to access the database from a UML domain model.  But you might not know specifically how the class diagram is interpreted during code generation.

Here’s a simple domain model for a video editor that allows you to annotate an image for machine learning.

domainmodel

This example only uses Aggregation, but several other relationships are possible.  The table below explains how CodeBot interprets what’s on the diagram.

UML relationships

You should find Composition useful for creating nested JSON structures; something which particularly lends itself to MongoDB collections, where the recommended “best practice” is that child elements with a strong ownership relationship are nested within each parent element, rather than being put into separate collections.

All other relationship types – Dependency, Realization, Responsibility etc (ad infinitum) – are treated as “non-semantic” by CodeBot, so can safely be used to define more abstract concepts that document the model rather than drive it.

How Multiplicity affects what’s generated

If you define multiplicity in the relationships (e.g. 0..1, 1..*), CodeBot uses these wherever possible for validation checks. If you don’t define the multiplicity, it defaults to either “0..1” or “1”, depending on the context.

Multiplicity also affects whether fields are generated as a single item or a list of items. Additionally, in languages that support optional types (e.g. Option in Scala, or Optional in Java), a multiplicity of 0..1 will be generated as an optional type.

Let’s quickly illustrate that with some brief code examples:

multiplicity

Try CodeBot for free at http://www.parallelagile.com/codebot.html

 

Published in Tutorials

This article will introduce you to both the Parallel Agile (PA) process and to the Parallel Agile Add-in for Enterprise Architect, which enables the PA process for Sparx customers.

Download the article in PDF here.

 

Parallel Agile Addin for Enterprise Architect

 

The Parallel Agile Add-in generates database access code and REST APIs from domain models, and it works in conjunction with the ICONIX Agile DDT Add-in, which generates acceptance tests from requirements and use cases.   Both add-ins are free.

We’ll discuss:

  • What’s Parallel Agile?
  • Compressing schedules with parallel development
  • Improving quality while compressing schedule
  • Why did we build an Enterprise Architect Add-in?
  • What’s an Executable Architecture?
  • What’s a Parallel Agile CodeBot?
  • Using the CodeBot to generate code for your domain model
  • Using our Cloud-Based Hosting Service to Test Your Generated API
  • Use Case Complexity Analyzer
  • Parallel Agile MDG Technology - supports Sprint Plans

 

 

 

Published in News

Improved C code generation
Efficient C++ code generation
Debugging on the model level (UML)
User code synchronization
Requirements Tracing

LieberLieber Embedded Engineer for Enterprise Architect Version 2.0 offers improved code generation from ANSI-C code from UML structures, state machines and activity models, as well as – brand new – the generation of C++ source code. This improves productivity by using more complex structures from UML modeling and state machines, the code for which, up to now, had to be implemented by hand in C or C++.

  • The automated code generation creates detailed documentation at the same time.
  • Existing solutions must not be converted, since a clean integration of model-based and classic development exists.
  • Compliance with norms is simplified, since only the Code Generator must be adapted.
  • Since the source code is delivered at the same time, necessary adjustments are easily possible and no dependency on solutions providers is generated.

You can download your 90-day trial here.

Published in News
 

 
This is a short tutorial showing all the steps leading up to the generation of a fully functioning asp .net application from a sample Microsoft SQL database schema in Enterprise Architect, using CodeTrigger for Enterprise Architect, without writing a single line of code. The approach used is also applicable to Oracle and MySql databases, and WPF / WCF / Winforms applications.
[Get the plugin here]
Published in Tutorials