
Branch / Merge with EA V13

Anyone who has done code development in a team will be familiar with the idea
of branching and merging. It’s a way to allow programmers to collaborate on a
complicated set of code, without falling-over each other. Someone takes a copy
(“branch”) of some code, modifies it, and merges it with the original copy when
they are finished. Good code management systems help to see where their
changes and those of others – who may have changed the same code - have
caused problems, which is why branch/merge is how almost all coding teams
work.

This is only important to EA modellers because it’s one of the most common
requests we see from new EA users: – why can’t I do branch/merge with
EA?

Up to now, the answer has been ‘because it’s hard’, and indeed a full
branch/merge solution for EA would be way, WAY more complicated than one
just for code, and therefore probably un-usable.

But can we get most of the benefits of a code-style branch/merge with
EA, without a 100% fool-proof solution?

With EA v13 we may just have a solution: not a 100% solution, but one which
has 10% of the function but which may deliver 90% of the benefits.

A real-life scenario

In a recent client engagement (details changed to protect the innocent) we had
a small team of modellers (30+) working on a large but quite simply-structured
model.

Let’s say they were writing Use Cases. What could be simpler?

For readers who don’t write use cases, replace ‘use case’ with your favourite EA
element type (Requirement, Business Process, SysML Block – they all have the
same issue).

Team #1 created:

1

Team #2 then produced this:

Let’s think about what Team#2 just created:

 Team #2 have re-used ‘UseCase3’ from the team 1 model (you can tell
from the namespace below it). What they wanted to say was ‘we’re using
UseCase3 – the exact one which the other team modelled’ – so this is
perfect.

 But Team 2 also have an actor called Actor1. This doesn’t look to have
been re-used from Team 1 – (clue: no namespace below it). It’s just a new
Actor which happens to have the same name. So they created a new
actor, called it “Actor1”, and started modelling.

Now my client spotted this one a mile away. Carrying on like this is going to
cause huge problems down the road. They were predicting 80+ actors (real-life,
individual roles) and if every team created their own duplicate with the same
name, this would rapidly become chaos. They would lose the ability to say ‘what
Use Cases does Actor1 get involved with?’ But which ‘Actor1’ are they talking
about?

2

The “Master Elements” solution

So they did the smart thing, and created a master set of Actors, in a locked part
of the model. And told teams to re-use those actors.

And replace any of their own duplicate versions of those actors with the master
ones:

The Team #1 model now looked like this:

That means when we ask which Use Cases Actor1 is involved with (by the EA
function ‘insert related elements), EA tells us:

3

…which is the combination of team#1 and #2s models, as they are both using
the same Actor instances from the common set.

Much more useful – and the best argument for ‘why EA is 1000% better than
Visio’.

So, problem solved? Well not quite.

These diagrams and documents which show ‘related elements’ are useful for
understanding what happening in a project, so they started creating more of
them, but started to get things like this:

4

Now we can say this isn’t great use case practice, but it’s what happened when
they enforced the ‘use the common actors’ rule. The master actors get
connected to everything –

 completed use cases,

 partially completed ones,

 ... and ones which are just some ideas the modeller is playing with.

If I want to find out the use cases which really use Actor1, which have a status
which means they are suitable for me to think about, then we need
something in between the chaos of ‘invent your own’ and ‘always re-use’.

We need an intermediate state of ‘using Actor1’: something like – ‘I’m
intending to use Actor1, but I’m not ready to tell the world what I’m doing’.

In the case of this customer – using EA12 – they had to create duplicate Actors
with the same name, then, once they were happy, manually merge their
‘temporary’ and ‘reusable’ Actor1s. An alternative would be to give each Use
Case a status, but this means we can’t use ‘insert related elements’ quite as
simply.

So not a great solution.

Then along came v13

EA V13 has introduced the idea of ‘time-aware EA’. Looking past the rather
grand title, it does provide a small amount of function which should make this
problem a lot simpler.

So now, here is the same story, using EA V13.

1. The first team creates their model as before, and, as today, adds their
new Actors into the ‘shared actors’ - having first checked with the model
manager that they haven’t been used before.

2. The next team wants to use Actor1, but they aren’t ready to use the ‘real’
one: they will only do that once they have passed some future milestone.
So they drop the shared ‘Actor1’ onto their diagram, then create a clone
of it:

5

3. Right-click on the actor, and select ‘Clone element as new version’. Note
this is EA v13 function, not available in previous versions.

Using numeric versions doesn’t seem useful here, as EA doesn’t check for
duplicate version numbers, so we suggest using the name of the team, or
some other string which lets people identify why this clone is being
created:

4. This diagram now looks like:

6

5. To see the magic which EA has done in the background, try dropping the
original Actor1 back onto the diagram:

EA has created a new element, with all the same characteristics as the
original, but with two differences:
- it has a ‘version’ set to ‘Team 2’:

7

 And has a <<trace>>connector back to the original Actor.

6. With this simple technique, we can now have the best of both worlds:

a. Team 2 can carry on modelling, adding whatever crazy stuff they
need to add to their cloned Actor1, and ‘real’ Actor1 users won’t
see it
UNLESS

8

The nature of this connection is worth
explaining:

 In an EA diagram, it’s a dotted-
line (“dependency”) with a
stereotype of <<trace>>

 In the EA traceability view, the
connection is called “depends
on”

 In the EA database, and in
eaDocX which use the EA API,
the connector type is
<<trace>>Abstraction

This is possibly 100% UML compliant,
buts it’s definitely 99% complicated.

b. Those users choose to follow the <<trace>> connector, and find
whatever use cases Team 2 are working on.

This is (fairly) easy using EITHER the EA traceability view:

You just need to know that the <<trace>> connector which EA
created when we cloned the Actor appears as a ‘needed by’
relationship in the traceability window. Here, there are two teams
which have create clones of Actor1.

OR

9

c. Tools like eaDocX1 are OK to print ‘multi-hop relationships’ like
this, in lots of different ways. For example, we can document the
‘master’ element and its related elements, then also its clones, and
their related elements.

1 eaDocX® is the approved Sparx Systems Extension providing integration with
Microsoft Word and Excel, online publishing and collaboration capabilities. For more
information visit http://www.eadocx.com

10

http://www.eadocx.com/

11

1 Actor1

Details:

This is the definitive description of this actor.

1.1 Accepted use cases for this actor

Use Case Ref Notes

Use Case1 UC001
This use case has been approved, so
can be seen by others

Use Case4 So has this

1.2 Work-in-progress clones of this Actor

Actor Description

Team 2
Actor1

This is team 2's clone of Actor1, which will be
merged later on when the use cases have been
approved.

Team 3
Actor1

This is team 3's clone of Actor1.

1.3 Work-in-progress use cases

Use Case Description

New use
case

Just getting started on this use case

Note to Sparx Systems: Next Steps?

Now that we have this starting point, I’d like to suggest that we need some
improvements to the EA UI which will allow us to go further:

 Implement a simple ‘merge’ function to move all the connectors from
a back-level element to a new one. Saves me having to drop old + new
onto the same diagram, with ALL their connected elements, and move the
connectors one at a time from old to new.

 Better diagram filters to show/hide different versions more simply
 Associating the current ‘version’ text field with something more

interesting – another EA element e.g. an Archimate Plateau, or some
other project-related ‘thing’, so that we can find out ‘all things associated
with version X.Y’ without having to start writing SQL

 Native EA support for the function that eaDocX lets us do already (as
shown above): ‘show the clones for this element’, ‘show me what’s
related to those clones’. These are now important functions, and
shouldn’t need me to create a document to see them easily.

Conclusion

The V13 ‘time aware’ function is limited, but it is a start, and it does show the
way to achieving what EA users have wanted for a long time – the ability to have
multiple ‘versions’ of the same thing in a model at the same time.

This has many more implications for EA users, as it opens-up new ways of using
EA. We can now allow teams to explore new ideas without messing-up the
model for other uses, and keep track of those explorations using standard EA
techniques.

________##________

About the author

Ian Mitchell is a Business Analyst by trade, and designer of the eaDocX and
Model Expert Extensions for Enterprise Architect. He’s been an EA user since
v3.5, and in the IT industry in all kinds of roles for 30+ years. He also writes the
Artful Modeller blog.

12

http://www.theartfulmodeller.com/
http://www.eadocx.com/modelexpert
http://www.eadocx.com/

	1 Actor1
	1.1 Accepted use cases for this actor
	1.2 Work-in-progress clones of this Actor
	1.3 Work-in-progress use cases
	A real-life scenario
	The “Master Elements” solution
	Then along came v13
	Note to Sparx Systems: Next Steps?
	Conclusion

